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Abstract

Laser irradiation of piezoelectric thin film produces a heating effect due to the absorption of light energy. In this

paper, a theoretical model is proposed to study thermopiezoelectric response of piezoelectric thin film. The transient

heat transfer equation with two-dimensional composite media is analytically solved by employing integral transform

technique. The thermopiezoelectric problem of piezoelectric thin film induced by laser beam is studied by means of

potential function method. In this case, the fields of stress, displacement and electric displacement are analytically

obtained and the general analytical solutions in quasi-static are written by a double series with dimensionless of for-

mulation. The numerical results of thermopiezoelectric fields for a piezoelectric thin film PZT-6B deposited on

MgO(1 0 0) substrate induced by Gaussian or doughnut laser beam are obtained and the results are discussed.

The calculated results show that temperature field is determined by the characteristic beam radius d and the max-

imum incident flux for Gaussian source q0. The radial and circumferential stresses in the thin film PZT-6B are tensile

and much larger than normal (compressive) and shear stresses. The Gaussian laser beam heating will produce higher

radial and circumferential stresses, however, the doughnut source will produce higher normal and shear stresses. The

horizontal electric displacement in the thin film is much larger than the vertical electric displacement. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric thin film materials has developed rapidly in recent years due to its wide application, in-
cluding high-value capacitors, infrared detectors, sensors and actuators, optical switches, ferroelectric
field-effect transistors, non-volatile memories (Haertling, 1999; Kant, 1988). Lead-zirconate–titan-
ate Pb(ZrxTi1�x)O3 (PZT) thin films have been intensively investigated for such applications. The PZT
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ferroelectric memory has many advantages such as high density, retention of charge over long periods of
time (order of decades) with any supplied voltage, and radiation immunity. Since these PZT materials have
dielectric constants, their application as dielectric layers in extreme high density, new generation dynamic
random access memory looks promising. The PZT thin films have been fabricated by various techniques
such as pulsed laser ablation (Verardi et al., 1997), rf sputtering (Choi et al., 1999), chemical vapor de-
position (Sakashita et al., 1991), metallo-organic decomposition (Zhu et al., 1996), sol–gel process(Cheng
et al., 2000).

However, as we know, it is natural that the film may fail due to the heating load, electric load as well as
mechanical load in the case of the film at operating state. Much research has shown that the compressive
stress may cause the film delamination from substrate. The tensile stress in thin film may cause the surface
crack in film (Hutchinson and Suo, 1992; Evans and Hutchinson, 1995). Piezoelectric thin film materials
operating in many structural components, especially aerospace components are ineluctable subject to severe
thermal loading which may be produced by aerodynamic heating, by laser irradiation, or by localized
intense fire (Duan et al., 1995; Zhou et al., 1997). In order to study the failure characteristics of PZT thin
film at heating load, the fields such as displacement, temperature and stress should be first known. The
piezoelectric actuator model and composite beam model are proposed to study coating or thin film system
(Wang and Meguid, 2000; Zhou and Hashida, in press). Because of their inherent complexity, relatively few
solutions for such coupled problems are available in the literatures.

Pulsed laser is now commonly used in such diverse applications, as drilling, welding, hardening,
quenching, cutting and thin film technology. Laser irradiation produces a heating effect due to the ab-
sorption of light energy (Nonhof, 1988; Steen, 1991; Welsh et al., 1988; Volchenok and Rudin, 1988).
Theoretical and experimental investigations of laser heating of materials and the resulting thermal stress
fields began to appear not long after the laser became a significant materials processing tool. Volchenok and
Rudin (1988) derived thermal stress field in a multiple plate due to the action of a continuous Gaussian
surface source. Hector and Hetnarski (1996) derived the thermal stress field in elastic half-space due to a
single pulse from a laser for the general case of a mixed-mode structure beam. The effect of laser spatial
distribution on the failure mechanism of materials is comprehensively investigated by Zhou and Duan
(Duan et al., 1996; Zhou and Duan, 1996). A tendency to develop critical crack growth because of stress
concentrations induced by mechanical and/or electric and/or thermal loads, have a dominant influence on
the failure of components (Crawley and de Luis, 1987; Im and Atluri, 1989).

The objective of the present paper is to propose an analytical model of thermopiezoelectric response of a
piezoelectric thin film and to obtain analytically stress fields due to pulsed laser heating for the piezoelectric
thin film. This research is significant in the life prediction and failure mechanism study for piezoelectric thin
film system operating at heating environment. Employing integral transfer technique and piezoelectric
potential function method, temperature and thermopiezoelectric fields in piezoelectric thin film are derived
respectively. If the parameters of laser beam, materials and geometry are known, a dimensionless numerical
result of the fields in the piezoelectric thin film PZT-6B deposited on MgO(1 0 0) substrate is obtained by
MATLAB standard routine. The effect of the stress field on the damage/failure is also discussed.

2. Theoretical model

2.1. Statement of the problem

For the study of failure mechanism of a piezoelectric thin film system operating at laser irradiation
condition, the physical map of temperature, thermal stress and electric fields should be first understood.
Generally, the problem should be three-dimensional. For simplicity, a system of cylindrical coordinates for
two-dimensional case is studied. Let us now consider a thermopiezoelectric model that comprises two layers
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in solid cylinder ð0 < r < r0Þ, thin film with thickness h and substrate with thickness H, the cylindrical
symmetry model consists of a piezoelectric thin film deposited on a crystal substrate as schemed in Fig. 1.
The deformation in radial direction is much large than that in the perpendicularity direction due to the fact
that the thickness of piezoelectric thin film is much small than the radius. Therefore, it is logical to have the
following assumptions:

(i) Heat flux is absorbed in the outer surface and there is not heat source in the bodies.
(ii) The heat flux across interface is continuous and the interface is completely heat contact.
(iii) There is not body force, nor body charge.
(iv) Thermopiezoelectric fields are quasi-static, non-coupled.
(v) The substrate is rigidity along perpendicularity direction, i.e. along z-direction. The axial displacement

at interface is zero.

2.2. Temperature fields

2.2.1. Governing equations
The heat conductivity equations for the transient temperature field Tiðr; z; tÞ in thin film and substrate

can be written as

o2Ti
or2

þ 1

r
oTi
or

þ o2Ti
oz2

¼ 1

ai

oTi
ot

; 0 < r < r0; i ¼ 1; 2; ð1Þ

where i ¼ 1, 2 denotes thin film and substrate, respectively. The boundary conditions for temperature and
heat flux can be expressed as in the following:

�k1

oT1

oz z¼0;r6 r0

��� ¼ f1ðr; tÞ;
oT2

oz

����
z¼H ;r6 r0

¼ 0;

oT1

or

����
0<z<h;r¼r0

¼ 0;
oT2

or

����
0<z<h;r¼r0

¼ 0;

T1jz¼a;r6 r0
¼ T2 z¼a;r6 r0

��� ; k1

oT1

oz

����
z¼h;r6 r0

¼ k2

oT2

oz

����
z¼h;r6 r0

:

9>>>>>>>>=
>>>>>>>>;

ð2Þ

Fig. 1. Schematic of the theoretical model for the piezoelectric response in PZT thin film induced by laser beam.
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The initial conditions can be expressed as

Ti r; z; tð Þjt¼0 ¼ T0 ¼ 0 zi�1 6 z < zi; r6 r0 ð3Þ

In Eqs. (1)–(3), ki, ai ¼ ki=qicpiði ¼ 1; 2Þ is, respectively, thermal conductivity and thermal diffusivity, t is
time, and qi, cpi ði ¼ 1; 2Þ is the density and the specific heat coefficient, respectively. The term
f1ðr; tÞ ¼ Y ðtÞQðrÞ is heat flux on the outer surface, where Y ðtÞ and QðrÞ are, respectively, the temporal and
spatial distributions. In the present paper, the temporal distribution of laser beam is chosen as Y ðtÞ ¼ 1. It
means that the problem is stationary. The following function is chosen to represent the heat absorbed on
the surface due to a pulsed laser with a mixed-mode structure (Hector and Hetnarski, 1996):

QðrÞ ¼ q0 f
�

þ 1ð � f Þ r
d

� �2
	
e� r=dð Þ2

: ð4Þ

The parameters d and q0 are the characteristic beam radius and the maximum incident flux for Gaussian
source, respectively. Here, f ¼ 1 and f ¼ 0 denote that laser beam is Gaussian source and doughnut
source, respectively. Fig. 2 schematics the spatial distributions of laser beam with Gaussian source and
doughnut source.

2.2.2. Solution of temperature fields
The above equations about temperature field are a problem with non-homogeneous boundary condi-

tions. Generally, the orthogonal expansion technique is used to solve the homogeneous problem of com-
posite medium of finite thickness (€OOzisik, 1993). The solution of temperature fields in general form can be
given as

Tiðr; z; tÞ ¼
X1
m¼1

X1
n¼1

A0 bm; kn; tð ÞR0ðbm; rÞZi;nðbm; kn; zÞ; i ¼ 1; 2; ð5Þ

where the coefficient A0ðbm; kn; tÞ, the fundamental functions R0ðbm; rÞ, Zi;nðbm; kn; zÞ, normal number
Nðbm; knÞ and characteristic values bm, kn are given in Appendix A.

2.2.3. Dimensionless formulation of temperature fields
If the initial temperature T0 is chosen as the reference temperature, temperature fields can be rewritten as

Hi ¼ Ti � T0 i ¼ 1; 2: ð6Þ

Fig. 2. Mode structure of laser source: (a) Doughnut source (f ¼ 0), (b) Gaussian source (f ¼ 1).
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The physical variables are written in a non-dimensional form as in the following:

r� ¼ r
d
; z� ¼ z

d
; r�0 ¼ r0

d
; z�h ¼

h
d
; z�H ¼ H

d
; b�

m ¼ bmd; k�
n ¼

kndffiffiffiffiffi
a1

p ;

t� ¼ a1t
d2

; s� ¼ a1s
d2

; H�
1 ¼

r2
0k1

2q0d3
T1; H�

2 ¼
r2

0k1

2q0d3
T2; A�

0 ¼
r2

0k1

2q0d3
A0:

ð7Þ

The solution of temperature fields (5) may be rewritten in dimensionless form as

H�
1 ¼

X1
m¼1

X1
n¼1

A�
0 b�

m; k
�
n; t

�� 

J0 b�

mr
�� 


cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�; ð8Þ

H�
2 ¼

X1
m¼1

X1
n¼1

A�
0 b�

m; k
�
n; t

�� 

J0 b�

mr
�� 


cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�h cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak�2

n � b�2

m

� �r
z�h
�

8>><
>>: � z�




þ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak�2

n � b�2

m

� �r sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�h sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak�2

n � b�2

m

� �r
z�h
�

� z�


9>>=
>>;; ð9Þ

where, a ¼ a1

a2
; c ¼ q2cp2

q1cp1
; K ¼ k1

k2
.

2.3. Thermopiezoelectric fields

2.3.1. Governing equations
As mentioned in the above, the substrate is rigid and therefore, the film is focused in the section. The

governing equations of thermopiezoelectric medium were first derived and commonly used in studying
piezoelectric materials (Mindlin, 1974; Nowacki, 1978; Iesan, 1989). The three-dimensional theory of
thermopiezoelectricity in the absence of body forces and free charges can be written in a compact manner as
following (Mindlin, 1974):

rij ¼ Cijklekl � ekijEk � kijH;

Di ¼ eiklekl þ �ikEk þ piH;

S ¼ kklekl þ pkEk þ gH;

9>>=
>>;

rij;j ¼ 0;

Di;i ¼ 0;

hi;i ¼ �T0S;

9>>=
>>;

eij ¼ 1
2
ðui;j þ uj;iÞ;

Ei ¼ �u;i;

hi ¼ �kijT;j;

9>>=
>>; ð10Þ

where i, j, k, l ¼ 1, 2, 3 and rij, Di, eij, ui, Ei, u, hi and S are the components of stress, electric displacement,
strain, displacement, electric field, electric potential, heat flux and entropy density, respectively. The term
H ¼ T � T0 is a temperature change with reference temperature T0. In Eq. (10), g is thermal expansion
coefficient. The coefficients Cijkl, eik, ekij, kij and pi are elastic, dielectric, piezoelectric, thermal modulus and
pyroelectric coefficients, respectively.

For a transversely isotropic thermoelectromechanical body, the constitutive relations become tractable if
we introduce a system of cylindrical coordinates ðr; h; zÞ for three-dimensional axisymmetric case. Noting
that the corresponding components are functions of r and z, independent of the angle of h and uh ¼ 0, the
equilibrium equations are given in the form of elastic displacement, electric potential and temperature
change. The details are given in Appendix B.
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2.3.2. Determination of piezoelectric potential functions
Referring the previous research (Ashida et al., 1994; Wang and Zheng, 1995; Shang et al., 1996; Zhao

et al., 1997), we introduce the following representation in terms of four potential functions w, w1, w2 and
w3:

u ¼ o
or w1 þ w2 þ w3 þ wð Þ;

w ¼ o
oz l11w1 þ l12w2 þ l13w3 þ l14wð Þ;

u ¼ o
oz l21w1 þ l22w2 þ l23w3 þ l24wð Þ;

9>=
>; ð11Þ

where lij, i ¼ 1, 2, j ¼ 1, 2, 3, 4 are some constant coefficients which is determined in Appendix B.
Due to the special form of temperature field T1ðr; z; tÞ in thin film as obtained in the above, the potential

function wðr; zÞ can be written in the following form:

wðr; zÞ ¼
X1
m¼1

X1
n¼1

A0 bm; kn; tð ÞDm bm; knð ÞJ0 bmrð Þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
n

a1

� b2
m

� �s
z; ð12Þ

where Dmðbm; knÞ is a function of ðbm; knÞ which are related with l14; l24. The potential function wðr; z; tÞ
is determined by the following equation,

o2w
or2

þ 1

r
ow
or

þ o2w
oz2

¼ ow
ot

w ¼ w4: ð13Þ

Considering the quasi-static assumption in the theoretical model, one has the equation ow=ot ¼ 0 and the
assumption is as same as the discussion of Hector and Hetnarski (1996). The potential functions
wjðj ¼ 1; 2; 3Þ satisfy the homogeneous equations

o2wj

or2
þ 1

r

owj

or
þ c2

j

o2wj

oz2
¼ 0: ð14Þ

It is natural that the force in the free surface is zero, i.e. rzr 
 0 at z ¼ 0, therefore, wj can be expressed as
follows:

w1 r; z1ð Þ ¼ c1

a1

P1
m¼1

J0 bmrð Þ A1sh bmz1ð Þ þ B1ch bmz1ð Þ½ �

w2 r; z2ð Þ ¼ c2

a2

P1
m¼1

J0 bmrð Þ A2sh bmz2ð Þ þ B2ch bmz2ð Þ½ �

w3 r; z3ð Þ ¼ � c3

a3

P1
m¼1

J0 bmrð Þ A1sh bmz3ð Þ þ B1ch bmz3ð Þ½ �

� c3

a3

P1
m¼1

J0 bmrð Þ A2sh bmz3ð Þ þ B2ch bmz3ð Þ½ �

� c3

a3

a4

j

P1
m¼1

P1
n¼1

A0 bm; kn; tð ÞDmJ0 bmrð Þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
n

a1
� b2

m

� �r
z3

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð15Þ

zi ¼
z
ci

ði ¼ 1; 2; 3Þ z4 ¼
z
j

j ¼ 1;

where the functions A1ðbmÞ, B1ðbmÞ, A2ðbmÞ, B2ðbmÞ will be determined by the force boundary conditions and
the discussions will be given in the following. The corresponding factors cj, ai are defined in Appendix B.
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2.3.3. Potential function expression of thermopiezoelectric fields
The solution of governing Eq. (10) can be represented by three quasi-harmonic functions wjðj ¼ 1; 2; 3Þ

and one non-homogeneous function w. Substituting the representation in terms of four potential functions
(11) into the constitutive Eq. (10), the corresponding stress and electric displacement components are
obtained and they are given as follows

rrr ¼
P4
j¼1

c11wj;rr þ c12
1
r wj;r þ c13l1j þ e31l2j

� 

wj;zz

� �
� k11H1;

rzz ¼
P4
j¼1

c13 wj;rr þ 1
r wj;r

� 

þ c33l1j þ e33l2j

� 

wj;zz

� �
� k33H1;

rzr ¼
P4
j¼1

c44 þ c44l1j þ e15l2j

� 

wj;rz;

rhh ¼
P4
j¼1

c12wj;rr þ c11
1
r wj;r þ c13l1j þ e31l2j

� 

wj;zz

� �
� k11H1;

Dr ¼
P4
j¼1

e15 1 þ l1j

� 

� �11l2j

� �
wj;rz þ p1H1;

Dz ¼
P4
j¼1

e31 wj;rr þ 1
r wj;r

� 

þ e33l1j � �33l2j

� 

wj;zz

� �
þ p3H1:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð16Þ

2.3.4. Dimensionless formulation of thermopiezoelectric fields
In order to obtain the dimensionless solutions for the fields of stress, displacements and electric dis-

placements, we define the following variables,

G ¼ 2q0k33d3

r2
0k1

; F ¼ 2q0p3d3

r2
0k1

; DD ¼ k11a4

k33 c11 �M4ð Þ : ð17Þ

When the dimensionless variables defined in expressions (7) are used and the Eqs. (12) and (15) are sub-
stituted into the former four formulas of Eq. (16), the dimensionless formulation of stress fields are ob-
tained as

r�
zz ¼

rzz

G
¼
X1
m¼1

b�2

m J0 b�
mr

�� 
 b1

a1c1

A�
1sh b�

mz
�
1

� 
��
þ B�

1ch b�
mz

�
1

� 
�
� b3

a3c3

A�
1sh b�

mz
�
3

� 
�
þ B�

1ch b�
mz

�
3

� 
�

þ b2

a2c2

A�
2sh b�

mz
�
2

� 
�
þ B�

2ch b�
mz

�
2

� 
�
� b3

a3c3

A�
2sh b�

mz
�
3

� 
�
þ B�

2ch b�
mz

�
3

� 
��

þ
X1
m¼1

X1
n¼1

A�
0DDJ0 b�

mr
�� 
 b3

a3c3

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� b4

a4

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	
� H�

1; ð18Þ

r�
zr ¼

rzr

G
¼ �

X1
m¼1

b�2

m J1 b�
mr

�� 

A�

1ch b�
mz

�
1

� 
�
þ B�

1sh b�
mz

�
1

� 

þ A�

2ch b�
mz

�
2

� 

þ B�

2sh b�
mz

�
2

� 

� A�

1ch b�
mz

�
3

� 

� B�

1sh b�
mz

�
3

� 

� A�

2ch b�
mz

�
3

� 

� B�

2sh b�
mz

�
3

� 
�
�
X1
m¼1

X1
n¼1

A�
0DD

b�
mJ1 b�

mr
�� 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	
; ð19Þ
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r�
rr ¼

rrr

G
¼
X1
m¼1

b�2

m J0 b�
mr

�� 
 d1

a1c1

A�
1sh b�

mz
�
1

� 
��
þ B�

1ch b�
mz

�
1

� 
�
þ d2

a2c2

A�
2sh b�

mz
�
2

� 
�
þ B�

2ch b�
mz

�
2

� 
�

� d3

a3c3

A�
1sh b�

mz
�
3

� 
�
þ B�

1ch b�
mz

�
3

� 

þ A�

2sh b�
mz

�
3

� 

þ B�

2ch b�
mz

�
3

� 
��

þ
X1
m¼1

X1
n¼1

A�
0DDJ0 b�

mr
�� 
 d3

a3c3

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� d4

a4

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	

� c12 � c11

r�
X1
m¼1

b�
mJ1 b�

mr
�� 
 c1

a1

A�
1sh b�

mz
�
1

� 
��*
þ B�

1ch b�
mz

�
1

� 
�
þ c2

a2

A�
2sh b�

mz
�
2

� 
�
þ B�

2ch b�
mz

�
2

� 
�

� c3

a3

A�
1sh b�

mz
�
3

� 
�
þ B�

1ch b�
mz

�
3

� 

þ A�

2sh b�
mz

�
3

� 

þ B�

2ch b�
mz

�
3

� 
��

�
X1
m¼1

X1
n¼1

A�
0DD

k�2

n � b�2

m

� � c3

a3

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� 1

a4

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	+
� k11

k33

H�
1; ð20Þ

r�
hh ¼

rhh

G
¼
X1
m¼1

b�2

m J0 b�
mr

�� 
 f1

a1c1

A�
1sh b�

mz
�
1

� 
��
þ B�

1ch b�
mz

�
1

� 
�
þ f2

a2c2

A�
2sh b�

mz
�
2

� 
�
þ B�

2ch b�
mz

�
2
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When the Eqs. (12) and (15) are substituted into Eq. (11), the dimensionless formulation of displacement
fields are obtained as,

w� ¼ a1

Gd
w ¼ a1

X1
m¼1

b�
mJ0 b�

mr
�� 
 l11

a1

A�
1ch b�

mz
�
1

� 
��
þ B�

1sh b�
mz

�
1

� 
�
� l13

a3

A�
1ch b�

mz
�
3

� 
�
þ B�

1sh b�
mz

�
3

� 
�

þ l12

a2

A�
2ch b�

mz
�
2

� 
�
þ B�

2sh b�
mz

�
2

� 
�
� l13

a3

A�
2ch b�

mz
�
3

� 
�
þ B�

2sh b�
mz

�
3

� 
��

þ a1

X1
m¼1

X1
n¼1

A�
0DD

J0 b�
mr

�� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r l13

a3

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� l14

a4

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	
; ð22Þ

3942 X.J. Zheng et al. / International Journal of Solids and Structures 39 (2002) 3935–3957



u� ¼ a1

Gd
u ¼ �a1

X1
m¼1

b�
mJ1 b�

mr
�� 
 c1

a1

A�
1sh b�

mz
�
1

� 
��
þ B�

1ch b�
mz

�
1

� 
�
� c3

a3

A�
1sh b�

mz
�
3

� 
�
þ B�

1ch b�
mz

�
3

� 
�
þ c2

a2

A�
2sh b�

mz
�
2

� 
�
þ B�

2ch b�
mz

�
2

� 
�
� c3

a3

A�
2sh b�

mz
�
3

� 
�
þ B�

2ch b�
mz

�
3

� 
��

þ a1

X1
m¼1

X1
n¼1

A�
0DD

b�
mJ1 b�

mr
�� 


k�2

n � b�2

m

� � c3

a3

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�3

�
� 1

a4

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

n � b�2

m

� �r
z�4

	
: ð23Þ

When the Eqs. (12) and (15) are substituted into the latter two formulas of Eq. (16), the dimensionless
formulation of electric displacement fields can be obtained and they are written in the following
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The corresponding factors ci, ai, bi, ci, di, fi, gi, lji, i ¼ 1, 2, 3, 4, j ¼ 1, 2 in the above equations are defined.
The unknown functions A�

1;B
�
1;A

�
2;B

�
2 can be determined by the boundary conditions of forces, displace-

ments and electric displacements. The details will be given in the following section.

3. Calculated results and discussion

The above theoretical model is used to study the thermopiezoelectric response of PZT-6B deposited on
MgO(1 0 0) substrate induced by a continuous laser beam heating. The results will be given as detail as
possible. The geometrical parameters are given in Fig. 1 with the radius of sample r0 ¼ 15 mm, the
thickness of thin film h ¼ 2 lm and the thickness of substrate H ¼ 2 mm.

3.1. Material parameters

As we know, due to the size effect, the material parameters of thin film should be different from those of
bulk materials. However, the material parameters of PZT thin film are so few that they cannot be found in
the references. In the study, the material parameters of bulk PZT are adopted as the parameters of PZT thin
film. On the other hand, the physical parameters should be all temperature dependent. However, the
temperature dependent parameters cannot easily be found in the references. Therefore, the physical pa-
rameters are all not dependent on temperature in the present investigation. Thermal physical parameters of
bulk PZT, such as the density, specific heat, thermal conductivity and thermal expansion coefficient, are
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taken from the literatures (Setter and Colla, 1993; Xu, 1991). The thermal diffusivity coefficient can be
calculated and the results for PZT thin film and MgO substrate are listed in Table 1. For a transversely
isotropic thermopiezoelectric body, the number of independent physical constants is 14, with 5 in elastic
coefficients, 2 in dielectric coefficients, 3 in piezoelectric coefficients, 2 in pyroelectric coefficients and 2 in
thermal modulus. The coefficients are taken from Shang et al. (1996) and Wang and Zheng (1995) and they
are listed in Table 2. The thermal modulus can be calculated from the stress–strain relation and the strain–
displacement relation in Eq. (10) and the results are also listed in Table 2. Other constants defined are listed
in Table 3.

3.2. Boundary conditions

According to the mode assumptions, the boundary conditions on the outer surface and continuous
condition at interface for traction, electric and displacement can be written in the following,

r�
zz z�¼0j ¼ 0; D�

z z�¼0j ¼ 0; D�
z z�¼h

ffiffiffiffi
Kc

p
��� ¼ 0; w�

z�¼h
ffiffiffiffi
Kc

p
��� ¼ 0: ð26Þ

In this case, the functions A�
1;B

�
1;A

�
2;B

�
2 can be determined from the above equations. If the expressions for

stress, electric displacement and displacement are substituted into the above equations, linear algebra
equations for variables A�

1;B
�
1;A

�
2;B

�
2 can be obtained. It is natural that the linear algebra equations can

easily be solved.

3.3. Temperature variation with r, z and t

Temperature fields due to a pulsed laser irradiation are primarily controlled by the temporal pulsed
profile and the radial intensity distribution. The temporal pulsed profile expresses distribution of pulse

Table 1

Thermal physical parameters

Density

(103 kg/m3)

Specific heat

(J/kg �C)

Thermal conductivity

(W/m �C)

Thermal diffusivity

(m2/s)

Thermal expansion

coefficient (10�6 K�1)

PZT-6B 7.6 420 1.2 3:76 
 10�7 7

MgO 3.58 976 710 2:03 
 10�4

Table 2

Mechanical physical parameters (PZT-6B)

Elastic coefficients

(1010 N m�2)

Piezoelectric

coefficients (C m�2)

Dielectric

coefficients

(10�10 F m�1)

Pyroelectric

coefficients

(10�4 C K�1 m�2)

Thermal

modulus

(106 N K�1 m�2)

c11 c33 c44 c13 c12 e15 e31 e33 �11 �33 p1 p3 k11 k33

16.8 16.3 2.71 6.0 6.0 4.6 �0.9 7.1 36.0 34.0 0 3.7 2.016 1.981

Table 3

Evolution of related constants for PZT-6B

li ¼ ½3:7326; 0:2264; 0:9719� ci ¼ ½1:9320; 0:4759; 0:9859�
l1j ¼ ½6:5507; 0:1268;�0:1620;�0:1774� l2j ¼ ½0:7948;�0:0027; 4:0620; 3:7357�
ai ¼ ½24:1184; 3:0411; 20:9564; 19:4133� bi ¼ ½90:0240; 0:6886; 20:9564; 17:6316�
ci ¼ ½22:8465; 1:1957;�138:3848;�127:3722� di ¼ ½�24:1184;�3:0411;�20:9564;�21:2265�
fi ¼ ½16:1934;�0:5956;�10:4594;�10:4265� gi ¼ ½6:1208; 5:2804;�142:3787;�130:7000�
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energy in time and the radial intensity distribution is determined by the characteristic beam radius d and the
maximum incident flux for Gaussian source q0 The two-dimensional spatial distributions of temperature
fields in the thin film PZT and MgO(1 0 0) substrate at t� ¼ 1 are shown in Fig. 3(a) and (b), respectively. It
is seen that the temperature is constant in the thin film along thickness direction. The temperature in the
center is much higher than that in the outer region of laser beam. However, the characteristic of temper-
ature in substrate is different from that in thin film. It is seen that the temperature in the center and at the
interface is much higher than that in other places. An example for temperature can be obtained according
to the results shown in Fig. 3 and the definition of dimensionless variables in expressions (7). If the duration
of continuous Gaussian source is taken as 2.66 s, the power density is taken as q0 ¼ 400 W/cm2 and the
characteristic beam radius is taken as d ¼ 2 mm, the highest temperature in thin film is 391 �C and it is
below the Curie temperature 490 �C (Setter and Colla, 1993). This means that the thin film will not have
phase transformation in this case.

Fig. 3. Steady-state spatial distribution of temperature fields at selected time t� ¼ 1: (a) PZT thin film, (b) MgO substrate.

Fig. 4. Steady-state variation of radial stress r�
rr and circumferential stress r�

hh in r-direction with different z at time t� ¼ 1: (a) r�
rr for

f ¼ 0 and f ¼ 1, (b) r�
hh for f ¼ 0 and f ¼ 1.
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3.4. Thermal stresses

3.4.1. Radial stresses r�
rr and circumferential stresses r�

hh

Fig. 4 shows the radial and circumferential stress variations with radial distance from axis on the surface
and at interface. It shows that the radial stresses at any place are compressive. However, the case for
circumferential stress is different. The circumferential stresses in the radiating region of laser beam are
compressive and those in the outer region of laser beam radiation are tensile stress. Although the tensile
circumferential stress in the outer region of laser beam radiation is low, the tensile stress may induce the
PZT thin film to damage for the brittle materials. This means that the damage will not be induced by radial
stress and the damage should be induced by circumferential stress. In many experiments about the thermal
failure of materials, one observed that the cracks were in the form of radial cracks and the cracks were not
in the form of circumferential cracks (Zhou et al., 1998). It is natural that the elements in the inner laser
heating region will expand and the expansion will meet the ‘‘cooler’’ elements outside of the edge of the
beam. The numerical results shown in Fig. 4 denote that the thermal failure characteristics for PZT thin
film should be same with other materials induced by laser beam.

Fig. 5. Radial distribution of surface stresses at selected times (t� ¼ 0:001, 0.005, 0.01, 0.1): (a) r�
rr for f ¼ 0, (b) r�

rr for f ¼ 1, (c) r�
hh for

f ¼ 0, (d) r�
hh for f ¼ 1.
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It is found that the largest compressive stress is in the peak place of laser beam both for Gaussian and
doughnut laser beam. On the other hand, the largest compressive stresses are on the surface of thin film and
near the edge of laser beam.

Fig. 5 shows the spatial distribution of stresses on the surface at different time. Under a certain sta-
tionary source, the maximum compressive stress r�

hh is larger than r�
rr. This means that the interface crack is

possibly generated and propagated due to the buckling of the thin film and the buckling is induced by the
compressive circumferential stress. Generally, the stress induced by Gaussian laser beam is larger than that
induced by doughnut laser beam. Figs. 5 and 6 show that the variations of radial and circumferential
stresses with time are rapid at the beginning of laser heating, however, when the non-dimensional time t�0 is
larger than 0.3–0.45 the variation becomes more and more smooth. The variations of stress with the
thickness of thin film are shown in Fig. 7, where the laser beam is Guassian stationary source f ¼ 1 and the
stress is in different places with r� ¼ 0:1 and 1 and the time is t� ¼ 0:001, 0.005, 0.01 and 0.1. It is easy to see
that the variations of radial stress described in Fig. 7(a) and (b) are consistent with the distribution of radial
stresses described by Fig. 4(a). Comparing Fig. 7(c), (d) and Fig. 4(b), we have the conclusion that the
circumferential stress is not dependent on the thickness of thin film.

3.4.2. Normal stress r�
zz and tangent stress r�

zr
Observing Fig. 8, we can obtain the results as in the following. (1) The radial and circumferential stresses

are much larger than the normal and tangent stress. (2) The normal and tangent stresses at interface vary
rapidly during very short time t�0 < 0:001 and after non-dimensional time 0.001, they trend to a stable value.
(3) The stress within laser beam radiation region is much larger than that in other place. The stress in the
outer region of laser beam radiation region is almost zero. When the laser beam is continuous Gaussian
source and the duration is 2.66 s, the maximum circumferential, radial, normal and tangent stresses at
interface are about �355.06, �18.94, �0.59 and �0.32 MPa, respectively. With the increment of depth of
thin film, the normal and tangent stress increase as shown in Fig. 9. However, the variations of normal and
tangent stress with the depth of thin film are small. In the above section, the circumferential, radial stresses
induced by Gaussian source are larger than those induced by doughnut source. However, one can see
another interesting phenomenon shown in Fig. 9 and the phenomenon is that the normal and tangent
stresses induced by doughnut source are larger than those induced by the Gaussian laser beam.

Fig. 6. Evolution of surface stresses at selected radial positions: (a) r�
rr for f ¼ 0 and f ¼ 1, (b) r�

hh for f ¼ 0 and f ¼ 1.
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3.5. Displacement u� and w�

The displacements u� and w� are shown in Fig. 10. It is found that the displacement in r-direction is
larger two orders of magnitude than that in z-direction. The maximum vertical displacement w� is induced
by the doughnut source and the maximum horizontal displacement u� is induced by Gaussian source. The
vertical displacement w� can be evaluated by Eq. (22) and it is 10�2–10�4 lm. The displacement is much less
than the thickness of the thin film (1 lm). For example, the maximum horizontal displacement u� for
Gaussian source with the duration of 2.66 s is 2.61 lm at the interface, however, the maximum verti-
cal displacement w� for doughnut source with the duration of 2.66 s is �16.72 nm on the surface. This
means that the displacement in vertical direction is much smaller than that in the horizontal direction.
Fig. 11 shows that the variations of displacements with time are rapid at the beginning of laser heating,
however, when the non-dimensional time t�0 is larger than 0.3–0.45 the variation becomes more and more
smooth.

Fig. 7. Axial variation of stress fields at selected times (t� ¼ 0:001, 0.005, 0.01, 0.1) for Gaussian source: (a) r�
rr for r� ¼ 0:1, (b) r�

rr for

r� ¼ 1, (c) r�
hh for r� ¼ 0:1, (d) r�

hh for r� ¼ 1.
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3.6. Electric displacement D�
z and D�

r

Fig. 12 shows the steady-state variation of horizontal electric displacement D�
r and vertical electric

displacement D�
z with distance from axis at selected depths z ¼ h=2 and time t� ¼ 1. Comparing D�

z and D�
r

variation with the distance from the center of laser beam at a certain time t� ¼ 1, one can see that the
horizontal electric displacement D�

r is much larger than that of vertical electric displacement D�
z . On the

other hand, the electric displacement D�
r and D�

z induced by doughnut source is much larger than those
induced by the Gaussian source. Fig. 13 shows that the variations of electric displacements with time are
rapid at the beginning of laser heating, however, when the non-dimensional time t�0 is larger than 0.3–0.45
the variation becomes more and more smooth. Fig. 14 shows the axial variation of electric displacement
fields at selected times (t� ¼ 0:001; 0:005; 0:01; 0:1Þ with the Gaussian source. When the duration is 2.66 s
for Gaussian laser beam, the maximum horizontal and vertical electric displacements with z ¼ h=2 are,
respectively, 0.91 and �1:16 
 10�3 C/m2.

Fig. 8. Radial distribution of interface stress at selected times (t� ¼ 0:001, 0.005, 0.01, 0.1) for Gaussian source: (a) r�
rr, (b) r�

hh, (c) r�
zz,

(d) r�
zr.
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4. Concluding remarks

In the present investigation, a theoretical model is proposed to study the thermopiezoelectric response of
piezoelectric thin films induced by laser beam heating. The temperature, stress, displacement and electric
displacement fields of PZT-6B thin film are analytically obtained. The numerical results are also obtained
and the characteristics of fields are mainly discussed. The main conclusions can be listed as in the following.

(1) Temperature field is primarily controlled by the temporal and spatial pulsed profile. Various tempera-
ture fields can be obtained when the power density and the characteristic radius of laser beam are
adjusted.

Fig. 9. Steady-state variation of normal stress and shear stress in r-direction with different z at time t� ¼ 1: (a) r�
zz for f ¼ 0 and f ¼ 1,

(b) r�
zr for f ¼ 0 and f ¼ 1.

Fig. 10. Steady-state variation of horizontal displacement u� and vertical displacement w� in r-direction with different z and time: (a) u�,
(b) w�.
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(2) The radial and circumferential stresses are almost not dependent on the depth, i.e. z. It is due to the fact
that the thickness of film is much thinner than the substrate. Comparing doughnut laser beam, the
Gaussian laser beam will induce a higher radial and circumferential stresses. However, the doughnut
laser beam will induce a higher normal and tangent stresses. The stresses in the laser beam irradiated
region are much larger than those in the other places. The variations of stresses with time are rapid at
the beginning of laser heating, however, when the non-dimensional time t�0 is larger than 0.3–0.45 the
variation becomes more and more smooth.

(3) The maximum vertical displacement w� is induced by the doughnut source and the maximum horizontal
displacement u� is induced by Gaussian source. The displacement in vertical direction is much smaller
than that in the horizontal direction.

(4) The horizontal electric displacement D�
r is much larger than that of vertical electric displacement

D�
z .

Fig. 11. Evolution of surface displacements at selected radial positions: (a) u� for f ¼ 1, (b) u� for f ¼ 0, (c) w� for f ¼ 1, (d) w� for

f ¼ 0.
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Appendix A

In this appendix, some coefficients and functions are listed. The coefficient A0ðbm; kn; tÞ for temperature
fields can be written as

Fig. 13. Evolution of electric displacement field at z ¼ h=2 and selected radial positions for Gaussian source: (a) D�
r , (b) D�

z .

Fig. 12. Steady-state variation of radial electric-displacement D�
r and vertical electric displacement D�

z in r-direction at selected depths

z ¼ h=2 and time t� ¼ 1: (a) D�
r for f ¼ 0 and f ¼ 1, (b) D�

z for f ¼ 0 and f ¼ 1.
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A0 bm; kn; tð Þ ¼
2
R r0

0
J0ðbmrÞf1ðr; z; tÞrdr

R t
s¼0

e�k2
n t�sð Þ ds

r2
0J

2
0 bmr0ð ÞN bm; knð Þ : ðA:1Þ

The fundamental functions are given in the following:

R0ðbm; rÞ ¼ J0ðbmrÞ; ðA:2Þ

Z1;nðbm; kn; zÞ ¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
n

a1

� b2
m

� �s
z; ðA:3Þ

Fig. 14. Axial variation of electric displacement fields at selected times (t� ¼ 0:001, 0.005, 0.01, 0.1) for Gaussian source: (a) D�
r for

r� ¼ 0, (b) D�
r for r� ¼ 1, (c) D�

z for r� ¼ 1.
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Z2;n bm; kn; zð Þ ¼ cos
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The norms are written in the following:

1

NðbmÞ
¼ 2

r2
0J

2
0 ðbmr0Þ

; ðA:5Þ

N bm; knð Þ ¼ q1cp1
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2

dz: ðA:6Þ

The characteristic values bm and kn are positive roots of the following equations, respectively:

J1 bmr0ð Þ ¼ 0; ðA:7Þ
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� �s
Hð � hÞ ¼ 0: ðA:8Þ

For the dimensionless temperature fields, the coefficient A�
0ðb

�
m; k

�
n; t

�Þ and norm are given as
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Appendix B

In this appendix, the equilibrium equations in the form of elastic displacement and electric potential are
given as

c11

o2

or2

�
þ 1

r
o

or

�
u� c11

u
r2

þ c44

o2u
oz2

þ c13ð þ c44Þ
o2w
oroz

þ e15ð þ e31Þ
o2u
oroz

� k11

oH
or

¼ 0; ðB:1Þ
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�
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�
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1

r
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or
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o2u
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�
þ 1

r
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�
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oz2

� k33
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oz
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ðB:2Þ
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r
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�
� �33
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oz2
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oz

þp1

oH
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�
þ H

r

�
¼ 0; ðB:3Þ

where the variables u, w and u are the basic unknown functions.
Substituting Eq. (11) into Eqs. (B.1)–(B.3), we have the following relationships:

o

or
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c11wj;rr

�
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1

r
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�
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r

�
:

ðB:4Þ

Here, w is taken as w4 ¼ w. The potential function w is chosen as the particular solution of the non-
homogeneous equation with p1 ¼ 0, one should have the following relationships:

Mj

c11

¼ Pj
Nj

¼ Gj

Fj
¼ c2

j ¼ nj; j ¼ 1; 2; 3; ðB:5Þ

k11

c11 �M4
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G4 � F4

¼ k33

N4 � P4

¼ k2
n

a1

�
� b2

m

�
Dm bm; knð Þ: ðB:6Þ

From Eq. (B.5), we can obtain a cubic algebra equation of nj (Zhao et al., 1997; Wang and Zheng, 1995),

An3 þ Bn2 þ Cn þ D ¼ 0; ðB:7Þ
where, the coefficients are written as,

A ¼ e2
15 þ c44�11

B ¼ 2e2
15c13 � c44e2

31 þ 2e15e31c13 � 2e15c11e33 þ �11c2
13 þ 2c13c44�11 � c33c11�11 � c44c11�33
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=c11
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h i
=c11
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� 

c44=c11

9>>>>>>=
>>>>>>;
:

ðB:8Þ
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The constants lij ði ¼ 1; 2, j ¼ 1; 2; 3Þ and the relationships among l14, l24 and Dmðbm; knÞ can be completely
determined from Eq. (B.6). The related constants (Fj;Gj;Mj;Nj; Pj, j ¼ 1; 2; 3; 4) are given as,

Mj ¼ c44 þ c13 þ c44ð Þl1j þ e31 þ e15ð Þl2j

Nj ¼ c13 þ c44 1 þ l1j

� 

þ e15l2j

Pj ¼ c33l1j þ e33l2j

Fj ¼ e15 1 þ l1j

� 

þ e31 � �11l2j

Gj ¼ e33l1j � �33l2j

9>>>>=
>>>>;
: ðB:9Þ

The corresponding factors of thermopiezoelectric fields are written as,

ai ¼ c44 1 þ l1ið Þ þ e15l2i

bi ¼ c33l1i þ e33l2i � c13c2
i

ci ¼ e33l1i � �33l2i � e31c2
i

di ¼ c13l1i þ e31l2i � c11c2
i

fi ¼ c13l1i þ e31l2i � c12c2
i

gi ¼ e15 1 þ l1ið Þ � �11l2i

9>>>>>>=
>>>>>>;
: ðB:10Þ
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